Assistance for Sugarcane Cultivation and Post-Harvest Processing as a Regional Superior Product in Nagari Talang Babungo, Solok Regency
Abstract
Nagari Talang Babungo in Solok Regency, West Sumatra, exhibits significant potential for sugarcane (Saccharum officinarum L.) cultivation. While the current average sugarcane yield in this area is 70 tons/ha, the maximum potential could reach 150 tons/ha. This research aims to enhance sugarcane productivity through the application of biochar, produced from agricultural waste including bagasse, as a soil amendment. Biochar has been shown to improve soil fertility and nitrogen use efficiency in plants. To capitalize on this potential, a comprehensive mentoring program has been implemented to enhance farmers' knowledge and skills in sugarcane cultivation and post-harvest processing techniques. Results demonstrate that biochar application can increase sugarcane biomass production by up to 23% and improve nitrogen use efficiency by up to 35%. Moreover, the socialization and training initiatives have significantly improved farmers' understanding, with average participant scores rising from 42.3 to 85.7 after program completion. The integration of biochar application and effective training not only boosts sugarcane productivity but also supports local economic development and agricultural sustainability in Nagari Talang Babungo. This program aligns with local government policies aimed at enhancing food security and agricultural productivity, thus contributing to the region's overall development strategy.
References
[2] T. J. Purakayastha et al., “A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security,” Chemosphere, vol. 227, pp. 345–365, 2019.
[3] Y. Jiang, L. Qian, W. Zhou, Z. Chen, and X. Liu, “Long-term biochar application improves soil quality and increases sugarcane yield in southern China,” Agric. Ecosyst. Environ., vol. 324, no. 107722, 2022, doi: https://doi.org/10.1016/j.agee.2021.107722.
[4] M. Z. Rehman et al., “Biochar-mediated improvements in nitrogen use efficiency and productivity of sugarcane grown in a semiarid climate,” Environ. Sci. Pollut. Res., vol. 30, no. 9, pp. 23743–23757, 2023, doi: https://doi.org/10.1007/s11356-022-19706-w.
[5] T. Pramono and B. Susanto, “Peningkatan Produksi Biomassa Tebu dengan Biochar,” J. Agron., vol. 15, no. 2, pp. 100–110, 2021.
[6] T. Hidayat and S. Nurjanah, “Efisiensi Penggunaan Nitrogen pada Tanaman Tebu,” J. Ilmu Tanah dan Lingkung., vol. 8, no. 3, pp. 75–85, 2020.
[7] S. D. Murni, A. Agustian, and M. Harianti, “Dinamika Karbon Dan Aktivitas Β-Glukosidase Di Topsoil Dan Subsoil Lahan Pertanian Monokultur Nagari Alahan Panjang Sumatera Barat,” J. Tanah dan Sumberd. Lahan, vol. 10, no. 2, pp. 393–400, 2023, doi: 10.21776/ub.jtsl.2023.010.2.22.
[8] E. S. Sutarta, S. Rahutomo, W. Winarna, and H. Santoso, “Karakteristik tanah pada perkebunan tebu di Sumatera: Implikasi terhadap manajemen pemupukan,” J. Tanah dan Iklim, vol. 45, no. 1, pp. 73–84, 2021, doi: https://doi.org/10.21082/jti.v45n1.2021.73-84.
[9] A. Rahman and L. Putri, “Dampak Penggunaan Biochar terhadap Kesuburan Tanah dan Produktivitas Pertanian,” J. Pertan. Berkelanjutan, vol. 13, no. 3, pp. 45–60, 2021.
[10] G. Cornelissen, N. R. Pandit, P. Taylor, B. H. Pandit, M. Sparrevik, and H. P. Schmidt, “Emissions and char quality of flame-curtain ‘Kon Tiki’ kilns for farmer-scale charcoal/biochar production,” PLoS One, vol. 11, no. 5, p. e0154617, 2016, doi: https://doi.org/10.1371/journal.pone.0154617.
[11] X. Zhang, J. Zhang, H. Wang, and Y. Li, “Impact of biochar application on soil pH and nutrient availability: A meta-analysis,” Sci. Total Environ., vol. 833, p. 155114, 2022, doi: DOI: 10.1016/j.scitotenv.2022.155114.
[12] Y. Liu, J. Zhang, D. Chen, and Z. Wang, “Biochar improves soil structure and water retention in sandy soils: A meta-analysis,” Geoderma, vol. 425, p. 116075, 2023, doi: DOI: 10.1016/j.geoderma.2022.116075.
[13] D. Wang, P. Jiang, H. Zhang, and W. Yuan, “Biochar production and applications in agro and forestry systems: A review,” Sci. Total Environ., vol. 723, p. 137775, 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.137775.
[14] L. Johnson and R. Smith, “The Effect of Structured Educational Interventions on Learning Outcomes,” J. Educ. Psychol., vol. 114, no. 3, pp. 234–245, 2022, doi: 10.1037/edu0000523.
[15] A. Martinez and C. Lee, “Addressing the Learning Gap: Impact of Training Programs on Low-Performing Students,” Educ. Res. Rev., vol. 18, no. 1, pp. 15–29, 2023, doi: 10.1016/j.edurev.2022.100123.
[16] J. Thompson and P. Green, “Assessing the Impact of Training Programs on Student Performance: A Meta-Analysis,” J. Train. Dev., vol. 45, no. 2, pp. 198–210, 2021, doi: 10.1016/j.jtd.2021.03.006.
[17] T. Wilson and K. Adams, “Feedback Mechanisms in Educational Training: Enhancing Learning Outcomes,” Int. J. Educ. Manag., vol. 37, no. 2, pp. 145–158, 2023, doi: 10.1108/IJEM-09-2022-0378.
[18] J. E. Thies and A. R. Graves, “Biochar application and its influence on plant growth and soil properties,” Soil Tillage Res., vol. 211, p. 104979, 2021, doi: 10.1016/j.still.2021.104979.
[19] J. Lehmann and S. Joseph, Biochar for Environmental Management: Science, Technology, and Implementation. Earthscan. 2022.
[20] W. Widowati, Z. Kusuma, and P. Astuti, “The effect of biochar on soil properties and sugarcane (Saccharum officinarum L.) growth in Ultisol,” IOP Conf. Ser. Earth Environ. Sci., vol. 950, no. 1, p. 012040, 2022, doi: https://doi.org/10.1088/1755-1315/950/1/012040.
[21] Y. Liu, J. Zhang, D. Chen, and Z. Wang, “Effects of biochar on soil pH and nutrient availability: A field study,” F. Crop. Res., vol. 299, p. 108848, 2023, doi: 10.1016/j.fcr.2022.108848.
[22] X. Zhang, H. Wang, Y. Li, and J. Chen, “Economic benefits of biochar in agricultural systems: A review,” Agric. Syst., vol. 196, p. 103314, 2022, doi: 10.1016/j.agsy.2021.103314.